Halphen Pencils on Quartic Threefolds

نویسنده

  • IVAN CHELTSOV
چکیده

∼= P, where g(x, y, z) = 0 is a homogeneous equation of the curve Z and (λ, μ) ∈ P. Then a general curve in P is birational to an elliptic curve. Remark 1.1. The construction of pencil P can be generalized to the case when C has at most ordinary double points and the points P1, · · · , P9 are not necessarily distinct (see [3]). The pencil P is called a standard Halphen pencil. Definition 1.2. A Halphen pencil is a one-dimensional linear system whose general element is an irreducible subvariety that is birational to a smooth variety of Kodaira dimension zero. The following result is proved in [3]. Theorem 1.3. Every Halphen pencil on P is birational to a standard Halphen pencil. Let X be a smooth quartic threefold in P. Then X is not rational, because Bir ( X ) = Aut ( X )

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Halphen Pencils on Weighted Fano Threefold Hypersurfaces

We classify all pencils on a general weighted hypersurface of degree ∑ 4 i=1 ai in P(1, a1, a2, a3, a4) whose general members are surfaces of Kodaira dimension zero.

متن کامل

On Some Moduli Spaces of Stable Vector Bundles on Cubic and Quartic Threefolds

We study certain moduli spaces of stable vector bundles of rank two on cubic and quartic threefolds. In many cases under consideration, it turns out that the moduli space is complete and irreducible and a general member has vanishing intermediate cohomology. In one case, all except one component of the moduli space has such vector bundles.

متن کامل

Some Calabi–yau Threefolds with Obstructed Deformations over the Witt Vectors

I construct some smooth Calabi–Yau threefolds in characteristic two and three that do not lift to characteristic zero. These threefolds are pencils of supersingular K3-surfaces. The construction depends on Moret-Bailly’s pencil of abelian surfaces and Katsura’s analysis of generalized Kummer surfaces. The threefold in characteristic two turns out to be nonrigid.

متن کامل

Q-factorial Quartic Threefolds

We prove that a nodal quartic threefold X containing no planes is Q-factorial provided that it has not more than 12 singular points, with the exception of a quartic with exactly 12 sin-gularities containing a quadric surface. We give some geometrical constructions related to the latter quartic.

متن کامل

On the smallest point on a diagonal quartic threefold

For the family a0x 4 = a1y +a2z +a3v +a4w 4, a0, . . . , a4 > 0, of diagonal quartic threefolds, we study the behaviour of the height of the smallest rational point versus the Tamagawa type number introduced by E. Peyre.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008